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The exact solution of the problem of the deflection of an anisotropic plate weak- 
ened by an aperture is known only for the case in which the aperture has the shape 
of a circle or an ellipse [i, 2]. An exact solution has not been derived for any 
other aperture shapes. Approximate methods [3-6] which are widespread for the case 
of multiply connected anisotropic plates [7] are applied to the determination of 
the bending moments in an anisotropic plate near an aperture differing little from 
an elliptical or circular one. 

w Let a thin anisotropic plate of thickness h having at each point a plane of elastic 
symmetry parallel to the median plane xOy occupy an infinite volume S with an aperture bounded 
by a simple smooth closed contour L which is described by the equation x + iy = R (e i8 - -  

~ the -~h~ . L e t  us d i s c u s s  t he  f i r s t  f u n d a m e n t a l  p rob lem i n  which bendfng  moments m(s) a r e  
h = i  . 

applied to the edge of the aperture L of the plate, and let the bending moments and torques 
at parts of the plate distant from the aperture be bounded: M x = MI, )~ = M2, and H~ = MI=. 

On the basis of the formulas of the deflection theory for anisotropic plates [i, 2] we 
write the boundary conditions in the differential form 

dV---. --m(s)dt ( tEL) ,  

with 

(i.i) 

V=~_~ (pj(zj)-~ ~ , (1 .2 )  

lim (p~(z~)=A O) ( ] = t ,  2), 

where T .(z-) are analytic functions describing the stress state in the plate, zj = x + ~jy 
(j = l,J2)Jare generalized complex variables which vary in the regions Sj obtainable from the 
region S by the appropriate affine transformations; ~ = aj + iBj are the roots of the char- 
acteristic equation; pj, ql are known constant quantities [I, 2]; t is the affix of a point 
of the contour L; and A(J)Jare constants which are expressed in terms of the bending moments 
and torques in the plate at infinity. 

The contours of the apertures of the regions S~j of the variables zj = x + ~jy are de- 
noted by Lj, and the affixes of their points are denoted by tj (j = i, 2). The affixes of 
the points of the contours Lj and the contour L are related by the affine relation 

i - ~ j  t + t ( i  = t ,  2 ) .  ( 1 . 3 )  tj = 

(1.4) 

Let us convert the boundary conditions (I.i) to integral form [8] 

f" F ( t )  d V  = - -  .f F (t) , ,  (t) dt, 
"L L 

I F (t)dV = --  .( F (t)m (t) dt, 
L L 

where F(t) is the limiting value of the arbitrary function F(z) of the variable z = x + iy, 
which is holomorphic in the region S of the plate. 

L'vov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 
168-177, September-October, 1977. Original article submitted September 6, 1976. 
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Let the regular function which performs a conformal mapping of the exterior of the unit 
circlet (I~] > i) onto the interior of the contour L of the region S be of the form 

with [9 ] 

Varying the constants R, 
circle, an ellipse, oval, 

Equations 

z = ~ o ( { ) = ~  ~ +  c~{ - ~  ( o ) ' ( { ) # o , l ~ ] ~ > l ) ,  (1.5) 

N 

k = i  

Ck, and  N i n  Eq. ( 1 . 5 ) ,  one can  o b t a i n  an a p e r t u r e  i n  t h e  fo rm o f  a 
c u r v e d  t r i a n g l e ,  q u a d r a n g l e ,  and e t h e r  f i g u r e s .  

( 1 . 3 )  w i l l  cake  t h e  fo rm 

t~ = ~--< [(o ((~) + ra/o (~)] (t] ~ L~, (~ ~ ?) ( 1 . 6 )  

when the mapping function (1.5) is taken into account, where 

n (t - <%) i + <tq (7 = 1, 2). 
/{J---- 2 ; mj : i  i~j 

Equations (1.6) are the limiting values of the functions 

= ~ 0~ (~j) + mj~ (z i ~ S j, I;J >~ 1), 

w h i c h  a r e  r e g u l a r  i n  t h e  r e g i o n s  I~j ]  N 1 e x c e p t  t he  p o i n t s  ~j = ~,, whe re  t h e y  h a v e  a p o l e  o f  
o r d e r  N. The f u n c t i o n s  ~ j ( ~ j )  and  ~'(~j) h a v e  z e r o s  l o c a t e d  o u t s i d e  t h e  u n i t  c i r c l e  5'( ~l[  
< - i )  whose  n u m b e r ' i s  equal ,  t o  N - - 1  "[9].  O u t s i d e  ~ o n l y  c~j (~ j )  r 0 and e ] ( ~ j )  # 0 f o r  g =~0 
( c i r c u l a r  a p e r t u r e )  and  N = 1 ( [ c ~ [  < 1) ( e l l i p t i c a l  a p e r t u r e ) .  

At large lzjl the functions ~j(zj) are of the form [i, 2] 

AO)z Ao(~) -~/) ~ (zJ : D O) In zj v- ~ -+- + O  ( t (] : l, 2). 

The constants D(J ) are expressed in terms of the components of the principal moment of the 
external forces applied to the boundary L according to known formulas (the principal vector 
Pz = 0) [2]. 

Introducing the notation Tj[~j(~j)] = ~,j(~j), we find 

q~i ( ; J  (]---- i, 2), ( 1 . 7 )  

whe re 

The functions ,j(~j) are bounded in the regions i <- I~j] < ~, and they have a pole of order 
N at the points ~j = . The last assertions follow frofn the conditions (1.2) imposed on the 
functions #gj (zj) at infinity 

lira q~} (-zj = lira q~j (~j) -- A (i) (] = 1, 2), ( 1 . 9 )  

and from the boundedness of the expression 

o 

2 a./ [(1 + +i(1 * r  
0 z  ' " j=t 

where W is the bending deflection of the plate. 

Consequently, the functions ~j(~) which are bounded in the region 1 <- [~4[ < 
be represented at sufficiently large l~ji in the form of series (the unbounded t~rms ~'arecandis- 
c a r d e d )  

q~*] (~i) D (i) In ~j -+- ~ ~(i)~h , ~(J)~--k uk ~j-~ ~ (] = l ,  2). (1.10) 
h = t  k = O  
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The single-valued functions (1.7) do not have other singular points besides the poles 
coinciding with the zeros of the function m'~(Sj). Consequently, they are meromorphic func- 
tions of the variables ~j .... In ~he case unde~ discussion (i.i0) are rational-fractional func- 
tions by virtue of the representations (1.5). 

With ~he appropriate definition of the functions ~ l.. (~4)one can ensure that the functions 
(1.7) will be bounded outside the unit circle y. To accomapl~sh this it is sufficient to re- ! 
quire ,that the zeros of the function ~,j(~j) coincide outside ~ with the zeros of the func- 
tion ~j(~j) . 

Thus the functions ~j(~j). should satisfy the conditions 

~" r , .oo/  0 ( n ~  t , 2 ,  N 1), ( ] =  1 , 2 ) ,  (i.ii) ~k~ 7~ ..., -- 

(n) 
where ~j are the roots of the equations 

o)  (~j)  = o (j  = ~, 2) 

larger than u n i t y  i n  absolute value (l~}n)] > i). 
f 

3 
The functions (1.7) take the form 

, ~)~ k~,(.i)~.h kA(J)~-f-h D ( i ) - r  ~ ~'~ ~.i -" 

) ( )J L ~, ~=~ -k-" ~-7-~ -- ~=~3" ~ 

on the basis of Eqs. (1.5), (1.8), and (i.i0). 

The conditions (1.9) 
in the form 

( 1 . 1 2 )  

and (i.ii) with the expansions (i.I0) taken into a c c o u n t  are written 

N N~I 

_' ;  E = , �9 + 
h=O k : t  

kA(h ~) ( t } " ) )  - h  ( n  = 1, 2 . . . . .  N - -  1), (] = t ,  2),  
k = N + I  

(l.13) 

wi th a(~) - ~ ~ _ i A ( j  ) = R s m s c ~  ( N > t ) .  

(n) 
Here ~i are the roots of the equations 

k=l ~=l 

larger than unity in absolute value (I~!n) I > i). 
3 

In the transformed region the boundary conditions (1.4) will take the form 

F ,  (a) d V  = - -  ~ F ,  (a)  m (o) oF (a) d %  
? ? 

P v 

where F,(~) = F[m(~)] is an arbitrary function holomorphic outside T. 

The limiting value of the function V on ~ is, according to Eqs. 
to 

v=ZX qJ- - 

t_--- + lno' ,  , ~ qj + ~ - - . . ~  ,, ~ ~ + ~ J ) o  ~ D *  
"= ,~=o~ , i ~ j /  " ,try 

wi th 
D* = - - - -  2~i m((~)o)' (o)d(~= --  "2~ " 

v+ 

( 1 . 1 4 )  

(l.15) 

(1.2) and (i.i0), equal 

( 1 . 1 6 )  
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Let us represent the arbitrary function F,(~) in the form of a series 

F, (~) = ~ ~A -~. 
~=o (1.17) 

Let us introduce Eqs. (1.16) and (1.17) into the boundary conditions (1.15) and perform an 
integration along the closed contour of y. At the same time setting all Ej except E n equal 
to zero, we obtain a system of linear algebraic equations in the coefficients of the expan- 
sion of the desired functions (i.i0) of the form 

( 
j=~ g j ]  J 

2 1  . + ) + > (  �9 
- )  l+t.+ ,a.+ / ---- gn = �9 . . ,  

w i t h  a ( j )  = 0 f o r  n > N a n d  i l  

]~ = ~ . o ~m (a)  (~r) dc~, g~ = 2 ~ n  c~-n m (o)  ((1) d e .  
~+ ,~+ 

From the system (1.18) we find for n > N 
�9 P~ . P___~ 

A(  t ) _ -  [ P~ P ~ ' f ' + - -  pt 
2i~qe-~x - - q ~ ' ~  ] 2 i ( q z ' - ~  --q~ ~++1 

P_..L Pz q~ - )  i u~ - q~--  i - -  

- ,~+ .~ -~  ~ q ~ - q ~ N  

t o  t h e  s y s t e m  ( 1 . 1 8 )  ( n  = 1 ,  2 . . . . .  N ) ,  

AS 2) = 

( 1 . 1 s )  

Having added Eqs. (1.13) we obtain the final 
system of linear algebraic equations of order 4N- 2 [N is the largest negative power in the 
expansion of the mapping function (1.5)] for the determination of the remaining coefficients 
of the expansion of the functions (I.i0). 

In the case of the second fundamental problem in which the values of the bending deflec- 
tion W and the normal derivatives 3W/3n of points of the contour L of the region S are speci- 
fied and the bending moments and torques in the plate at infinity are bounded, the system of 
Eqs. (1.18) is replaced by the following one: 

2 

, . -  \ a O ) l  * E [ ( l + i , ] ) A ~ !  ) ~ - ( 1 + + ~ )  ,~ 1 = / ~ ,  

2 (i .19) 

- ~ J >  ' i,~j) a ~  )1 " S~ [ ( i  -}- +ttj! ,~,~ %- (1 - r  ---- g,+ (n  ---- 1, 2 . . . .  , oo), 
j=t  

with a (j) = 0 for n > N and 

2~in ~ , gn = 2."-.~tn ~  
, LoT 3" 

~,+ v+ 

external forces causing the specified deflection W and 
surface ~W/3n at points of the contour L are equal to 
Having solved the system (1.19) for n > N, we find 

i - -  i ~  2 .r t %- i ~  2 -* 
= 2~( ,~t~- -~)  t~ , 2 ~ i ~ - - - ~ )  g~' 

If the principal moment of the 
the inclination angle of the curved 
zero, then the constants D(J) = 0. 

Ai: ) 

A(n2) 1 ~- i~tl -* t - -  i~ i 

Having assigned Eqs. (1.13) to the system (1.19) (n = i, 2 ..... N), we obtain the final sys- 
tem of linear algebraic equations of order 4N- 2 for the determination of the remaining coef- 
ficients of the expansion of the functions (i.I0). 

In the case in which an absolutely rigid core is soldered into the aperture L of the 
plate, IV = 2 Re (e0t) @ Wo(t~L), where eo is a complex quantity, and, consequently, fn = 0 and gn 
= O. 

Everything that has been said above can be applied with obvious insignificant changes 
to the case of a finite region S mapped onto the circle I~I -< 1 by a function of the form. 

h = 2  / 
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w Let us discuss the deflection of an orthotropic plate with a triangular aperture. 
Let us direct the x and y coordinate axes parallel to the principal elasticity directions. 
At infinity the plate is deflected by the moments M x = MI, ~ = M2, and H~ = 0. The edge 
of the aperture L of the plate is not loaded (m = 0). 

In this case N = 2~ c, = 0, c2 = c2 D (j) = 0, fn = 0, g = 0, R = R, B= =-~I, m= = m,, 
- , 4 2~ = ~*), and an(2) = ~n(*)" The system of algebraic R2 = RI, p2 = Pl, q2 = ql, r2 t-r, 

equatiqn=,.~l.13) ~?,d (1.18) will be of the sixth order of the following form (the coeffi- 
cients ~3 and a~ 3] are cof~plex quantities): 

~ j=o, 

=O, j ,,j 

where 2A!~i) + ~ t  ~++ -- ~I ~I ] = "-~2 ~.~t ! 
(q,M x -- - ~ a ~  1) _ Rlmlc2 -- ~ 

+ 2 ( P l q l  - -  P l Y )  ' " ----- u 2  + 

Here ~!*) (~[') = ~!*) ) is the root of Eq. (i.14). 

2c=m,~ § $ ~ -  m~, -- 2c z = 0, (2.1) 

larger in absolute value than unity ([~!*)l >i). 

The stress functions are, according to (i.12), of the form 

2,,d),~4 , ^(i)r3 A~J)~j 2A!)h 
~ 2 ~ j ~ - + , ~ j -  - " ( j = l ,  2). 

- + 

Numerical values of the bending moments M o (in fractions of M) are given in Table 1 at some 
points of the contour of the triangular aperture (ca = 0.25) of a_plywood panel having the 
following values of the complex parameters B~ = e + i8 and B~ = --12, [i]: 

o ~ - - 1 . 0 4 ,  fi = i .55 ,  ~,~ = 0.31,  v., = 0.026, if 

Ex .... Emax and~  = 0.299, ~ = 0.4~4, x'~ = 0.026, v., = 0.31,  ( 2 , 2 )  

if Ex = Emin. 

The roots ~!') of Eq. (2.1) are larger than unity in absolute value > l) and ac- 
cordingly equal to (c~ = 0.25) 

~]1) __ 3.603 + i2.938,  ~l)  "~]I) if E~: = Emax and ~(il) - -  - -  3.570 + 

+ i3.068, ~l)  - -~( l )  if Ex ---- Emin. 

w Let us consider the deflection of an orthotropic plate with a square aperture. Let 
us take the principal elasticity directions as the direction of the x and y axes. At infinity 
the plate is deflected by the moments M x = M, = M, and Hxy = 0. The edge of the aperture 
L of the plate is not loaded (m = 0). 

In the case under discussion N = 3,_c~ = 0, c~ = 0, ca = ca, R = R.,D(J) = 0, fn = 0, 
gn = O, ]a~ : " - i t ,  ma=m,, R,  = R.,., pm : p,, q~ = q ~ ,  r=  = - - r t ,  ~m)=~) an(m) : ~n(,); and 
are equal to zero with even indices n When ca is positive, the vertices of the square lie 
on the x and y axes, and when ca is negative, the sides of the square are parallel to the 

coordinate axes. 

The system of algebraic equations (1.3) and (1.18) will, when the symmetry of the prob- 
lem is taken into account, be of sixth order of the following form: 

Re [(+1- ~ P'-~I)A(n t, -~ - (q l -~  i ' ~ ' )  a}t)] = 0 ,  

aAg'  + A i '  - -  = a 4 "  

(n = ~, 3), (~ = ~, a), 

whe re 
-- ~M~ ). a(2) _ ~(~) 

- -  2 ( P l q : - -  P ~ )  ' 3 - -  ~ �9 

Here ~k) (~!k) = ~!k)) are roots of Eq. (i.14), 
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Fig. i Fig. 2 

2 3c~m1~ + ~i - -  m l~ l  - -  3c3 = O, (3.i) 

larger in absolute value than unity ( I  ~!k)] > 1). 

The stress functions are, according to (1.12), of the form 

, ~(~)~-6 aO)r4 A(Dr2 3A U) 
(pj(z A =  ~"3 ~ j +  , ~ j -  , ~ j -  3 (1=1,2). 

n j  [t;~ - 3 ~ ) -  ,,~ (.,j - 3~;~)] 

Numerical values of the bending moments M 0 (in fractions of M) are given in Table 2 at 
some points of the contour of the square aperture (ca = +1/9) of the plywood panel with the 
complex parameters (2.2). The roots of Eq. (3.i) larger in absoluue value than unity (l~!k) l 
> i) are correspondingly equal to 

( ; ? ) ) 2  = __ 5.103 - -  i4 .767,  ;~h) =~11r 

( ; ? ) ) :  = ~.683 + e4.280, ; ~ ) = ~ ? ) ,  

(;~k))2 5.'103 --  ,;4.767, ;(~) ~?) 

(;?))~ = - 5.683 + ~4.280, ;~ '  =-~?), 

( k=  l, 2). 

1 
if E~ ---~ Emax, c 3 ~ -- -- 9' 

i 
if E ~ =  Emax, Ca = ~ ,  

i 
if E x  = Emin,  ca ---- - -  i f ,  

t 
if E x---  Emin, c a = ~ - ,  

The distribution of the moments M 8 along the edge of the corresponding apertures in the 
plywood panel for which the sides parallel to the Oy axis (M~x = M, /i~g= 0) are loaded is il- 
lustrated in Figs. i and 2. The plots situated in the lower part of . i (~ ~ 8 ~ 2~) cor- 
respond to the case in which the sides of the plate parallel to the Ox axis (~ = M, 
~x = 0) are loaded. The solid lines correspond to the case E x = Emax, the dashed-dot lines 
correspond to the case E x = Emin, and the dashed lines correspond to an isotroplc plate with 
a Poisson coefficient equal to 0.3. 

The two-dimensional problem of elasticity theory for an anisotropic plate with an aper- 
ture of the form (1.5) is solved analogously. 
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TEMPERATURE INFLUENCE IN USE OF AN INTERFERENCE MET}DD TO STUDY 

THE EFFECTS OF NORMAL STRESSES 

A. A. Sharts UDC 535. 854:531.787 

It can now be considered established that deviations in fluid behavior from the classical 
theory predictions appear mainly in the normal stress effects [i]. For fluids with struc- 
tural viscosity which varies with the change in the velocity gradient, these effects (Weis- 
senberg effects [2]) are observed at comparatively low velocity gradients and extensive ex- 
perimental material exists [3]. 

On the other hand, for fluids which do not exhibit changes in viscosity even for high 
velocity gradients in both the classical [4] and much later experiments, there are no data on 
a study of the normal stresses at high velocity gradients in the literature. The absence of 
such experiments becomes understandable if it is taken into account that while measurement of 
the viscosity imposes no great demands on the adjustment of the apparatus, a study of the nor- 
mal stressesrequires ultimately accurate surfaces and careful adjustment to reduce the dynami- 
cal errors, which is difficult to achieve at those high velocity gradients when the appearance 
of second-order effects could be expected in fluids with Newtonian viscosity. The influence 
of nonparallelism in the mounting of disks in a torsion flow was studied in [5]. 

Small gaps (on the order of tenths of a micron) must be used to achieve high velocity 
gradients in a torsion flow, and this does not permit application of traditional methods of 
measuring the normal stresses since both manometer orifices and piezosensors distort the micro- 
geometry of the gap. 

A contactless method of investigating the normal stresses in a torsion flow by using the 
inte[ference of a large path difference and the property of epoxy resin to change the index 
of refraction with the change in load was proposed in [6]. 

Since heat is generated in a fluid mass subjected to a shear stress and interference 
methods are quite sensitive to the thermal shift of optical surfaces, it is necessary to 
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